[image:]

10_DevOps_Deployment/DB_Databricks_Asset_Bundles.docx

Databricks Asset Bundles Complete Guide

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Document Information
	Field
	Value

	Version
	1.0

	Last Updated
	2025-01-29

	Classification
	Internal Use

	Owner
	Platform Engineering Team

1. Executive Summary
Databricks Asset Bundles (DABs) is Databricks' infrastructure-as-code solution for managing and deploying Databricks resources. This guide provides comprehensive patterns for using Asset Bundles to define, validate, deploy, and manage jobs, pipelines, ML models, and other Databricks resources as code.
What are Asset Bundles?
Asset Bundles allow you to:
Define Databricks resources (jobs, pipelines, clusters) in YAML files
Version control all configurations alongside your code
Deploy consistently across development, staging, and production
Validate configurations before deployment
Manage the complete lifecycle of Databricks assets
Key Benefits
	Benefit
	Description

	Reproducibility
	Same configuration deploys identically every time

	Collaboration
	Teams work on configurations via Git workflows

	Auditability
	Git history shows who changed what and when

	Consistency
	Environments stay in sync with code

	Automation
	CI/CD pipelines deploy configurations automatically

2. Bundle Architecture
2.1 Component Overview
┌───┐
│ DATABRICKS ASSET BUNDLES ARCHITECTURE │
├───┤
│ │
│ ┌───┐ │
│ │ BUNDLE DEFINITION │ │
│ │ │ │
│ │ databricks.yml │ │
│ │ ├── bundle: name, variables │ │
│ │ ├── workspace: host, root_path │ │
│ │ ├── artifacts: wheels, JARs │ │
│ │ ├── include: resource files │ │
│ │ └── targets: dev, staging, prod │ │
│ │ │ │
│ └───┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ RESOURCE DEFINITIONS │ │
│ │ │ │
│ │ resources/ │ │
│ │ ├── jobs/*.yml Workflow jobs │ │
│ │ ├── pipelines/*.yml DLT pipelines │ │
│ │ ├── models/*.yml ML models │ │
│ │ ├── experiments/*.yml MLflow experiments │ │
│ │ ├── schemas/*.yml Unity Catalog schemas │ │
│ │ └── clusters/*.yml Cluster policies │ │
│ │ │ │
│ └───┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ BUNDLE COMMANDS │ │
│ │ │ │
│ │ databricks bundle validate Check configuration syntax │ │
│ │ databricks bundle deploy Deploy to target environment │ │
│ │ databricks bundle run Execute a job or pipeline │ │
│ │ databricks bundle destroy Remove deployed resources │ │
│ │ databricks bundle sync Sync files to workspace │ │
│ │ databricks bundle summary Show deployment summary │ │
│ │ │ │
│ └───┘ │
│ │
└───┘
2.2 Supported Resource Types
	Resource Type
	Description
	YAML Key

	Jobs
	Workflow orchestration
	`resources.jobs`

	Pipelines
	Delta Live Tables
	`resources.pipelines`

	Models
	MLflow models
	`resources.models`

	Experiments
	MLflow experiments
	`resources.experiments`

	Model Serving
	Real-time endpoints
	`resources.model_serving_endpoints`

	Schemas
	Unity Catalog schemas
	`resources.schemas`

	Registered Models
	UC registered models
	`resources.registered_models`

	Clusters
	Interactive clusters
	`resources.clusters`

	Dashboards
	SQL dashboards
	`resources.dashboards`

3. Bundle Configuration Deep Dive
3.1 Main Configuration File
The databricks.yml file is the entry point for your bundle:
databricks.yml - Complete example with all sections explained

Bundle metadata
bundle:
 name: enterprise-data-platform
 # Optional: specify compute to use for bundle operations
 compute_id: ${var.default_cluster_id}

Git integration (optional)
Useful when deploying from a specific Git reference
git:
 origin_url: https://github.com/company/data-platform.git
 branch: main

Variables for parameterization
These can be overridden per-target or via CLI
variables:
 # Required variable (must be provided)
 environment:
 description: "Deployment environment"

 # Variable with default value
 default_cluster_id:
 description: "Default cluster for interactive work"
 default: "0123-456789-abc123"

 # Complex variable (object)
 notification_settings:
 description: "Email notification configuration"
 default:
 on_failure: ["alerts@company.com"]
 on_success: []

Workspace settings
workspace:
 host: ${var.workspace_host}
 # Root path where bundle artifacts are deployed
 root_path: /Shared/bundles/${bundle.name}/${bundle.target}
 # Optional: specify artifacts path
 artifact_path: /Shared/bundles/${bundle.name}/${bundle.target}/artifacts
 # Optional: specify files path for sync
 file_path: /Shared/bundles/${bundle.name}/${bundle.target}/files

Build artifacts (Python wheels, JARs)
artifacts:
 # Python wheel artifact
 data_utils:
 type: whl
 path: ./libraries/data_utils
 # Build command to create the wheel
 build: |
 pip install build
 python -m build --wheel

 # Pre-built JAR artifact
 custom_jar:
 type: jar
 path: ./jars/custom-transformations.jar
 # No build command - JAR is pre-built

File synchronization settings
sync:
 # Files to include in sync
 include:
 - src/**/*.py
 - src/**/*.sql
 - config/*.json
 # Files to exclude
 exclude:
 - "**/__pycache__/**"
 - "**/.git/**"
 - "**/tests/**"
 # Paths to sync (relative to bundle root)
 paths:
 - src
 - config

Include additional resource files
include:
 - resources/jobs/*.yml
 - resources/pipelines/*.yml
 - resources/schemas/*.yml

Permissions for deployed resources
permissions:
 - level: CAN_VIEW
 group_name: data-viewers
 - level: CAN_RUN
 group_name: data-operators
 - level: CAN_MANAGE
 group_name: data-admins

Run-as configuration (service principal)
run_as:
 service_principal_name: ${var.service_principal}

Target environments
targets:
 # Development target
 development:
 mode: development
 default: true
 workspace:
 host: https://adb-dev.azuredatabricks.net
 variables:
 environment: dev
 workspace_host: https://adb-dev.azuredatabricks.net
 # Development mode adds [dev username] prefix to resources
 # and enables development-specific behaviors

 # Staging target
 staging:
 mode: staging
 workspace:
 host: https://adb-staging.azuredatabricks.net
 variables:
 environment: staging
 workspace_host: https://adb-staging.azuredatabricks.net
 run_as:
 service_principal_name: staging-deploy-sp

 # Production target
 production:
 mode: production
 workspace:
 host: https://adb-prod.azuredatabricks.net
 variables:
 environment: prod
 workspace_host: https://adb-prod.azuredatabricks.net
 run_as:
 service_principal_name: production-deploy-sp
 # Production-specific permissions override
 permissions:
 - level: CAN_VIEW
 group_name: all-users
 - level: CAN_RUN
 group_name: production-operators
 - level: CAN_MANAGE
 group_name: production-admins
3.2 Job Resource Definition
resources/jobs/daily_etl.yml
resources:
 jobs:
 daily_etl_job:
 name: "[${bundle.target}] Daily ETL Pipeline"
 description: |
 Processes daily data from source systems.
 Runs bronze → silver → gold transformations.

 # Tags for organization and cost tracking
 tags:
 team: data-engineering
 project: sales-analytics
 cost_center: DE-100

 # Timeout for entire job
 timeout_seconds: 14400 # 4 hours

 # Job-level cluster (shared across tasks)
 job_clusters:
 - job_cluster_key: main_cluster
 new_cluster:
 spark_version: "14.3.x-scala2.12"
 node_type_id: ${var.worker_node_type}
 num_workers: 4
 spark_conf:
 spark.databricks.delta.optimizeWrite.enabled: "true"
 spark.databricks.delta.autoCompact.enabled: "true"
 spark.sql.shuffle.partitions: "200"
 aws_attributes: # Or azure_attributes
 availability: SPOT_WITH_FALLBACK
 spot_bid_price_percent: 100

 - job_cluster_key: heavy_cluster
 new_cluster:
 spark_version: "14.3.x-scala2.12"
 node_type_id: ${var.heavy_node_type}
 autoscale:
 min_workers: 2
 max_workers: 10

 # Task definitions
 tasks:
 # Task 1: Bronze ingestion
 - task_key: bronze_ingest
 job_cluster_key: main_cluster
 notebook_task:
 notebook_path: ../src/notebooks/bronze_ingestion.py
 base_parameters:
 catalog: ${var.catalog}
 schema: ${var.schema}
 source_date: "{{job.start_time.iso_date}}"
 timeout_seconds: 3600

 # Task 2: Silver transformation (depends on bronze)
 - task_key: silver_transform
 depends_on:
 - task_key: bronze_ingest
 job_cluster_key: main_cluster
 notebook_task:
 notebook_path: ../src/notebooks/silver_transformation.py
 base_parameters:
 catalog: ${var.catalog}
 schema: ${var.schema}

 # Task 3: Gold aggregation (depends on silver)
 - task_key: gold_aggregate
 depends_on:
 - task_key: silver_transform
 job_cluster_key: heavy_cluster # Use heavier cluster
 notebook_task:
 notebook_path: ../src/notebooks/gold_aggregation.py
 base_parameters:
 catalog: ${var.catalog}
 schema: ${var.schema}

 # Task 4: Python wheel task for data quality
 - task_key: data_quality
 depends_on:
 - task_key: gold_aggregate
 job_cluster_key: main_cluster
 python_wheel_task:
 package_name: data_utils
 entry_point: run_quality_checks
 parameters:
 - "--catalog=${var.catalog}"
 - "--schema=${var.schema}"
 libraries:
 - whl: ../artifacts/data_utils/*.whl

 # Task 5: SQL task for reports refresh
 - task_key: refresh_reports
 depends_on:
 - task_key: data_quality
 sql_task:
 warehouse_id: ${var.sql_warehouse_id}
 query:
 query_id: ${var.report_query_id}

 # Task 6: Conditional notification
 - task_key: send_notification
 depends_on:
 - task_key: refresh_reports
 condition_task:
 op: EQUAL_TO
 left: "{{tasks.data_quality.values.quality_score}}"
 right: "PASSED"
 # Runs only if condition is true

 # Schedule
 schedule:
 quartz_cron_expression: "0 0 6 * * ?"
 timezone_id: "America/New_York"
 pause_status: UNPAUSED

 # Trigger (alternative to schedule)
 # trigger:
 # file_arrival:
 # url: s3://bucket/path/
 # wait_after_last_change_seconds: 60

 # Queue settings
 queue:
 enabled: true

 # Email notifications
 email_notifications:
 on_start:
 - start-notifications@company.com
 on_success:
 - success-notifications@company.com
 on_failure:
 - critical-alerts@company.com
 no_alert_for_skipped_runs: true

 # Webhook notifications
 webhook_notifications:
 on_failure:
 - id: ${var.pagerduty_webhook_id}

 # Health rules for monitoring
 health:
 rules:
 - metric: RUN_DURATION_SECONDS
 op: GREATER_THAN
 value: 7200 # Alert if job takes > 2 hours
3.3 DLT Pipeline Resource Definition
resources/pipelines/streaming_pipeline.yml
resources:
 pipelines:
 streaming_ingest_pipeline:
 name: "[${bundle.target}] Streaming Ingest Pipeline"

 # Target schema in Unity Catalog
 catalog: ${var.catalog}
 target: ${var.schema}_streaming

 # Pipeline configuration
 configuration:
 # Custom pipeline parameters
 source.kafka.bootstrap_servers: ${var.kafka_brokers}
 source.kafka.topic: transactions
 pipeline.startingOffsets: latest

 # Cluster configuration
 clusters:
 - label: default
 autoscale:
 min_workers: 1
 max_workers: 5
 mode: ENHANCED
 node_type_id: ${var.worker_node_type}
 spark_conf:
 spark.databricks.delta.optimizeWrite.enabled: "true"

 - label: maintenance
 num_workers: 1
 node_type_id: ${var.small_node_type}

 # Libraries (notebooks or Python files)
 libraries:
 - notebook:
 path: ../src/pipelines/streaming_bronze.py
 - notebook:
 path: ../src/pipelines/streaming_silver.py
 - notebook:
 path: ../src/pipelines/streaming_gold.py

 # Continuous mode for real-time processing
 continuous: true

 # Development mode allows destructive schema changes
 development: ${bundle.target == "development"}

 # Enable Photon for acceleration
 photon: true

 # Serverless compute (if available)
 serverless: false

 # Channel (CURRENT or PREVIEW)
 channel: CURRENT

 # Notifications
 notifications:
 - email_recipients:
 - streaming-alerts@company.com
 alerts:
 - on-update-failure
 - on-flow-failure
4. Working with Bundles
4.1 Essential Commands
Initialize a new bundle project
databricks bundle init

Validate bundle configuration
Checks syntax and resolves variables
databricks bundle validate

Validate for specific target
databricks bundle validate -t production

Deploy bundle to target environment
databricks bundle deploy -t staging

Deploy with variable override
databricks bundle deploy -t staging --var="catalog=test_catalog"

Run a specific job
databricks bundle run daily_etl_job -t staging

Run with parameter override
databricks bundle run daily_etl_job -t staging \
 --params="source_date=2025-01-29"

Run pipeline with full refresh
databricks bundle run streaming_ingest_pipeline -t staging --refresh-all

Sync files to workspace (development)
databricks bundle sync -t development --watch

Show deployed resources summary
databricks bundle summary -t staging

Destroy deployed resources
databricks bundle destroy -t development --auto-approve

Generate bundle schema (for IDE support)
databricks bundle schema > bundle-schema.json
4.2 Variable Substitution
Variables can reference other variables and built-in values

variables:
 project_name:
 default: sales-analytics
 environment:
 description: "Target environment"

resources:
 jobs:
 example_job:
 # Reference variable
 name: "${var.project_name} - ${var.environment}"

 # Reference bundle built-ins
 description: |
 Deployed from bundle: ${bundle.name}
 Target: ${bundle.target}
 Git branch: ${bundle.git.branch}

 tags:
 # Dynamic tags
 bundle_name: ${bundle.name}
 deployed_by: ${workspace.current_user.userName}

 tasks:
 - task_key: example
 notebook_task:
 # Reference relative path (resolved at deploy time)
 notebook_path: ../src/notebooks/example.py
 base_parameters:
 # Reference job run values
 run_id: "{{job.run_id}}"
 start_time: "{{job.start_time.iso_date}}"
4.3 Conditional Configuration
Use target mode for conditional configuration

targets:
 development:
 mode: development
 # Development-specific overrides
 resources:
 jobs:
 daily_etl_job:
 # Pause schedule in development
 schedule:
 pause_status: PAUSED
 # Smaller cluster for testing
 job_clusters:
 - job_cluster_key: main_cluster
 new_cluster:
 num_workers: 1

 production:
 mode: production
 resources:
 jobs:
 daily_etl_job:
 # Active schedule in production
 schedule:
 pause_status: UNPAUSED
 # Full cluster for production
 job_clusters:
 - job_cluster_key: main_cluster
 new_cluster:
 num_workers: 8
5. Advanced Patterns
5.1 Multi-Project Bundles
databricks.yml for monorepo with multiple projects

bundle:
 name: data-platform-monorepo

include:
 # Include project-specific bundles
 - projects/sales/databricks.yml
 - projects/marketing/databricks.yml
 - projects/finance/databricks.yml
 # Shared resources
 - shared/clusters.yml
 - shared/permissions.yml

Shared variables across all projects
variables:
 shared_catalog:
 default: enterprise_catalog
 shared_warehouse_id:
 default: abc123def456
5.2 Template Patterns with YAML Anchors
Use YAML anchors for reusable configurations

Define anchor for common cluster config
x-cluster-config: &default-cluster
 spark_version: "14.3.x-scala2.12"
 spark_conf:
 spark.databricks.delta.optimizeWrite.enabled: "true"
 custom_tags:
 team: data-engineering

resources:
 jobs:
 job_a:
 job_clusters:
 - job_cluster_key: cluster_a
 new_cluster:
 <<: *default-cluster # Merge anchor
 node_type_id: m5.xlarge
 num_workers: 4

 job_b:
 job_clusters:
 - job_cluster_key: cluster_b
 new_cluster:
 <<: *default-cluster # Reuse same config
 node_type_id: m5.2xlarge
 num_workers: 8
5.3 External Configuration Files
databricks.yml
bundle:
 name: configurable-pipeline

variables:
 config_path:
 default: ./config/default.json

resources:
 jobs:
 configurable_job:
 tasks:
 - task_key: run_with_config
 notebook_task:
 notebook_path: ../src/notebooks/configurable.py
 base_parameters:
 # Pass config file path
 config_file: ${var.config_path}
src/notebooks/configurable.py
import json

Read configuration from parameter
config_path = dbutils.widgets.get("config_file")
with open(f"/Workspace{config_path}") as f:
 config = json.load(f)

Use configuration
source_table = config["source_table"]
target_table = config["target_table"]
6. Troubleshooting
6.1 Common Issues
	Issue
	Cause
	Solution

	Validation fails
	YAML syntax error
	Check indentation, use YAML linter

	Variable not found
	Missing variable definition
	Define in variables section or provide via CLI

	Permission denied
	Insufficient workspace access
	Check service principal permissions

	Resource already exists
	Naming conflict
	Use unique names or destroy existing

	Sync fails
	File permission issues
	Check file paths and permissions

6.2 Debugging Commands
Verbose output for debugging
databricks bundle validate -t staging --debug

Show resolved configuration
databricks bundle validate -t staging --output json | jq .

Check authentication
databricks auth describe

List deployed resources
databricks bundle summary -t staging --output json
Document Control
	Version
	Date
	Author
	Changes

	1.0
	2025-01-29
	Platform Team
	Initial document

This document is maintained by the Platform Engineering Team. For questions or updates, contact the team via the #platform-engineering Slack channel.
image1.png
#MAST=CH
DIGITAL

